Full Content is available to subscribers

Subscribe/Learn More  >

Mutual Information Based Feature Selection From Data Driven and Model Based Techniques for Fault Detection in Rolling Element Bearings

[+] Author Affiliations
Karthik Kappaganthu

Cummins, Inc., Columbus, IN

C. Nataraj

Villanova University, Villanova, PA

Paper No. DETC2011-47822, pp. 941-953; 13 pages
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 23rd Biennial Conference on Mechanical Vibration and Noise, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5478-5
  • Copyright © 2011 by ASME


This paper proposes a novel technique combining datadriven and model-based techniques to significantly improve the performance in bearing fault diagnostics. Features that provide best classification performance for the given data are selected from a combined set of data driven and model based features. Some of the common data driven techniques from time, frequency and time-frequency domain are considered. For model based feature extraction, recently developed cross-sample entropy is used. The ranking and performance of each of these feature sets are studied, when used independently and when used together. Mutual information based technique is used for ranking and selection of the optimal feature set. Using this method, the contribution to performance and redundancy of each of the data driven features and model based features can be studied. This method can be used to design an effective diagnostic system for bearing fault detection.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In