Full Content is available to subscribers

Subscribe/Learn More  >

Modally-Tuned Influence Coefficients for Low-Speed Balancing of Flexible Rotors

[+] Author Affiliations
Y. A. Khulief

King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia

M. A. Mohiuddin

Schlumberger, Dhahran, Saudi Arabia

Paper No. DETC2011-47150, pp. 831-837; 7 pages
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 23rd Biennial Conference on Mechanical Vibration and Noise, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5478-5
  • Copyright © 2011 by ASME


The need to devise a low-speed balancing method for balancing high-speed rotors was recognized and addressed. In this paper, a scheme that combines both the influence coefficients and modal balancing techniques is presented. The scheme is developed for low-speed balancing of high-speed rotors, and relies on knowledge of modal characteristics of the rotor. The conditions for applicability of the method were stated in the light of the experientially estimated rotor deflection mode shapes. An experimental test rig of a flexible rotor was constructed to verify the applicability and reliability of the low-speed balancing scheme.

Copyright © 2011 by ASME
Topics: Rotors



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In