Full Content is available to subscribers

Subscribe/Learn More  >

Fabrication and Finite Element Analysis of Micro Dents Using μ-Laser Shock Peening

[+] Author Affiliations
Michael P. Sealy, Y. B. Guo

The University of Alabama, Tuscaloosa, AL

M. F. Horstemeyer

Mississippi State University, Starkville, MS

Paper No. MSEC_ICMP2008-72231, pp. 237-244; 8 pages
  • ASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing
  • ASME 2008 International Manufacturing Science and Engineering Conference, Volume 1
  • Evanston, Illinois, USA, October 7–10, 2008
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4851-7 | eISBN: 978-0-7918-3836-6
  • Copyright © 2008 by ASME


Laser shock peening (LSP) is an innovative surface treatment developed to improve surface integrity. This study explores the feasibility using LSP to direct-write surface micro dents for lubricant retention. Since LSP is a highly transient process with a pulse duration of 10 – 100 ns, a real time in-situ measurement of laser/material interaction such as transient stresses/strains is challenging. Therefore, a 3D finite element simulation of micro-scale laser shock peening was developed to determine the effect of laser pulse duration and peak pressure on the transient material behaviors of titanium Ti-6Al-4V. The simulated dent geometry is similar to the measured dent geometry in terms of morphology. The results suggested there is an optimal peening time that produces the deepest dent. The maximum transient stress in peening direction occurred at a certain laser pulse time. However, the stress along the depth and radius were drastically affected by the peak pressures.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In