0

Full Content is available to subscribers

Subscribe/Learn More  >

Simulation of Crack Initiation at the Interface Edge Between Sub-Micron Thick Films Under Creep by Cohesive Zone Model

[+] Author Affiliations
Do Van Truong

Kyoto University, Kyoto, Japan

Paper No. MSEC_ICMP2008-72061, pp. 1-6; 6 pages
doi:10.1115/MSEC_ICMP2008-72061
From:
  • ASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing
  • ASME 2008 International Manufacturing Science and Engineering Conference, Volume 1
  • Evanston, Illinois, USA, October 7–10, 2008
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4851-7 | eISBN: 978-0-7918-3836-6
  • Copyright © 2008 by ASME

abstract

Delamination between sub-micron thick films is initiated at an interface edge due to creep deformation, and leads to the malfunction of microelectronic devices. In this study, the cohesive zone model approach with a cohesive law based on damage mechanics was developed to simulate crack initiation process at an interface edge between film layers under creep. Delamination experiments using a micro-cantilever bend specimen with a Sn/Si interface were conducted. The parameters charactering the cohesive law were calibrated by fitting displacement-time curves obtained by experiments and simulations. In addition, the order of the stress singularity, which increases with time and has a significant jump in its value at the crack initiation, was investigated.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In