0

Full Content is available to subscribers

Subscribe/Learn More  >

Multi-Modal Vibration Energy Harvesting Using a Trapezoidal Plate

[+] Author Affiliations
Mustafa H. Arafa

American University in Cairo, Cairo, Egypt

Paper No. DETC2011-47817, pp. 247-254; 8 pages
doi:10.1115/DETC2011-47817
From:
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 23rd Biennial Conference on Mechanical Vibration and Noise, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5478-5
  • Copyright © 2011 by ASME

abstract

Vibration-based energy harvesters are usually designed to exhibit natural frequencies that match those of the excitation for maximum power output. This has spurred interest into the design of devices that respond to variable frequency sources. In this work, an electromagnetic energy harvester in the form of a base excited trapezoidal plate is proposed. The plate geometry is designed to achieve two closely spaced vibration modes in order to harvest energy across a broader bandwidth. The ensuing bending and twisting vibrations are utilized in this capacity by placing a magnet on the plate tip that moves past a stationary coil. A dynamic model is presented to predict the system performance and is verified experimentally.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In