0

Full Content is available to subscribers

Subscribe/Learn More  >

On Stability of a Nonlinear, Periodically Time Varying, Rotating Blade

[+] Author Affiliations
Fengxia Wang

Southern Illinois University Edwardsville, Edwardsville, IL

Paper No. DETC2011-48574, pp. 151-158; 8 pages
doi:10.1115/DETC2011-48574
From:
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 23rd Biennial Conference on Mechanical Vibration and Noise, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5478-5
  • Copyright © 2011 by ASME

abstract

This paper discusses the stability of a periodically time-varying, spinning blade with cubic geometric nonlinearity. The modal reduction method is adopted to simplify the nonlinear partial differential equations to the ordinary differential equations, and the geometric stiffening is approximated by the axial inertia membrane force. The method of multiple time scale is employed to study the steady state motions, the corresponding stability and bifurcation for such a periodically time-varying rotating blade. The backbone curves for steady-state motions are achieved, and the parameter map for stability and bifurcation is developed. Illustration of the steady-state motions is presented for an understanding of rotational motions of the rotating blade.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In