Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of the Internal Resonance and Regenerative Chatter Dynamics in Nonlinear Milling Process

[+] Author Affiliations
Hamed Moradi, Mohammad R. Movahhedy, Gholamreza Vossoughi, Mohammad T. Ahmadian

Sharif University of Technology, Tehran, Iran

Paper No. DETC2011-48490, pp. 141-150; 10 pages
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 23rd Biennial Conference on Mechanical Vibration and Noise, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5478-5
  • Copyright © 2011 by ASME


Peripheral milling is extensively used in manufacturing industry. To achieve more material removal rate, high precision and surface quality and increase tool life, chatter vibration must be suppressed. In this paper, an extended dynamic model of the peripheral milling process including both the structural nonlinearity and nonlinear cutting forces is presented. Using the multiple-scale approach, as a perturbation technique, internal resonance of the milling process is investigated. Transfer of the energy between the coupled x-y modes is studied. According to results obtained, it is possible to adjust the rate at which the x-mode (or y-mode) decays by implementation of the internal resonance (arisen from the coupled dynamics of x-y modes with a cubic nonlinearity). Similar to the internal resonance case, it is shown that under regenerative chatter with specific machining conditions, one mode can decay. Therefore, under both internal resonance and regenerative chatter conditions, it is possible to suppress the undesirable vibration of the mode (direction) in which more accurate surface finish is required.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In