0

Full Content is available to subscribers

Subscribe/Learn More  >

Cracked Shaft Damage Identification via Symmetry Breaking Active Magnetic Bearing Control and Interrogation

[+] Author Affiliations
J. Zhao, H. A. DeSmidt

University of Tennessee, Knoxville, TN

Paper No. DETC2011-48738, pp. 75-82; 8 pages
doi:10.1115/DETC2011-48738
From:
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 23rd Biennial Conference on Mechanical Vibration and Noise, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5478-5
  • Copyright © 2011 by ASME

abstract

A new vibration-based damage identification methodology for cracked rotor systems with periodically time-varying dynamics is developed and demonstrated on a shaft-disk system. This approach is based Floquet theory and utilizes measured changes in the system natural frequencies to estimate the severity and location of shaft structural cracks during operation. The damage identification is enhanced through the use of an Active Magnetic Bearing with adjustable support stiffness and acceleration feedback. Here, a novel symmetry-breaking closed-loop control is employed during the iterative damage identification process to enrich the data set by removing the Eigen degeneracy of the symmetric shaft structure. This approach enables full damage identification from a single sensor and hence without requiring measured modeshape information. The dynamical model of system is built based on the Lagrange principle and the assumed mode method while the crack model is based on fracture mechanics. The method is synthesized via harmonic balance and numerical examples for a shaft/disk system demonstrate the effectiveness in detecting both location and severity of the structural damage.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In