Full Content is available to subscribers

Subscribe/Learn More  >

Controlling Vehicle Instability Through Stable Handling Envelopes

[+] Author Affiliations
Craig E. Beal, Carrie G. Bobier, J. Christian Gerdes

Stanford University, Stanford, CA

Paper No. DSCC2011-6124, pp. 861-868; 8 pages
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, Volume 2
  • Arlington, Virginia, USA, October 31–November 2, 2011
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5476-1
  • Copyright © 2011 by ASME


Loss of control accidents result in thousands of fatalities in the United States each year. Production stability control systems are highly effective in preventing these accidents, despite their reliance on a hand-tuned response to data from a small set of sensors. However, improvements in sensing offer opportunities to determine stabilizing actions in a more systematic manner. This paper presents an approach that utilizes the yaw-sideslip phase plane to choose boundaries that eliminate unstable and undesirable driving regimes. These boundaries may be varied to obtain desirable performance and driver acceptance and form the basis for a driver assistance system that augments the driver input to maintain the vehicle within the bounds of a safe handling envelope. Experimental results from a model predictive controller used to enforce the envelope boundaries on a steer-by-wire vehicle are presented to demonstrate the viability of this framework for implementing stability boundaries.

Copyright © 2011 by ASME
Topics: Vehicles



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In