0

Full Content is available to subscribers

Subscribe/Learn More  >

Radial Basis Function Network (RBFN) Approximation of Finite Element Models for Real-Time Simulation

[+] Author Affiliations
Madusudanan Sathia Narayanan, Puneet Singla, Venkat Krovi

University at Buffalo, Buffalo, NY

Sudha Garimella, Wayne Waz

SUNY at Buffalo, Buffalo, NY

Paper No. DSCC2011-6154, pp. 799-806; 8 pages
doi:10.1115/DSCC2011-6154
From:
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, Volume 2
  • Arlington, Virginia, USA, October 31–November 2, 2011
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5476-1
  • Copyright © 2011 by ASME

abstract

Nonlinearities inherent in soft-tissue interactions create roadblocks to realization of high-fidelity real-time haptics-based medical simulations. While finite element (FE) formulations offer greater accuracy over conventional spring-mass-network models, computational-complexity limits achievable simulation-update rates. Direct interaction with sensorized physical surrogates, in offline or online modes, allows a temporary sidestepping of computational issues but hinders parametric analysis and true exploitation of a simulation-based testing paradigm. Hence, in this paper, we develop Radial-Basis Neural-Network approximations, to FE-model data within a Modified Resource Allocating Network (MRAN) framework. Real-time simulation of the reduced order neural-network approximations at high temporal resolution provided the haptic-feedback. Validation studies are being conducted to evaluate the kinesthetic realism of these models with medical experts.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In