Full Content is available to subscribers

Subscribe/Learn More  >

Optimal LQ Transient Air-to-Fuel Ratio Control of an Internal Combustion Engine

[+] Author Affiliations
Stephen Pace, Guoming G. Zhu

Michigan State University, East Lansing, MI

Paper No. DSCC2011-6004, pp. 763-768; 6 pages
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, Volume 2
  • Arlington, Virginia, USA, October 31–November 2, 2011
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5476-1
  • Copyright © 2011 by ASME


Most modern spark ignited (SI) internal combustion engines maintain their air-to-fuel ratio (AFR) at a desired level to maximize the three-way catalyst conversion efficiency and to extend its life. However, maintaining the engine AFR during its transient operation is quite challenging due to rapid changes of driver demands. Conventional transient AFR control is based upon the inverse dynamics of the engine port-fuel-injection well-wetting dynamics and the measured mass air flow rate. This paper develops a dynamic linear quadratic (LQ) tracking controller to regulate the AFR using a control oriented model of the wall wetting dynamics of a port fuel injector (PFI) and estimated transport delays of the airflow travel and throttle dynamics. The LQ tracking controller is designed to optimally track the measured airflow through the throttle during engine transients over a given time interval. The performance of the optimal LQ tracking controller was compared with the conventional inverse fueling dynamics through simulations and showed improvement over the baseline controller.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In