0

Full Content is available to subscribers

Subscribe/Learn More  >

Energy-Based Modeling of Alternative Energy Storage Systems for Hybrid Vehicles

[+] Author Affiliations
J. McDonough, K. Jebakumar, F. Chiara, M. Canova

The Ohio State University, Columbus, OH

K. Koprubasi

GM Global Research & Development, Warren, MI

Paper No. DSCC2011-5951, pp. 701-708; 8 pages
doi:10.1115/DSCC2011-5951
From:
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, Volume 2
  • Arlington, Virginia, USA, October 31–November 2, 2011
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5476-1
  • Copyright © 2011 by ASME

abstract

Alternative energy storage systems (AESS) are receiving considerable interest today for low-cost mild-hybrid vehicles where the electrical system is substituted with mechanical or hydraulic energy storage. As these technologies are being explored, simulation tools become helpful to predict the behavior of the energy storage system during vehicle use, as well as to conduct comparative studies evaluating the energy and power density, fuel economy improvement, system weight and costs. This paper presents an energy-based modeling approach to characterize the low-frequency dynamic behavior of alternative energy storage systems for hybrid vehicle applications, with the ability to predict the energy flows and sources of energy loss during driving operations. The model aims at evaluating the potential, in terms of efficiency and fuel economy improvement, offered by non-electrified energy storage systems, such as mechanical (flywheels) or hydraulic (accumulators). The modeling tool developed is able to provide a characterization of the performance of each of the two systems starting from a characterization of the components energy conversion behavior. The paper includes a simulation study where the performance of a mechanical and hydraulic energy storage system are compared on a forward-oriented hybrid vehicle simulator, with the objective of characterizing and comparing the energy recuperation process and the energy efficiency of the two systems.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In