Full Content is available to subscribers

Subscribe/Learn More  >

An Experimentally Tuned Dynamic Model Predicting Cell Migration for Guidance of Sprouting Endothelial Cells

[+] Author Affiliations
Levi Wood, H. Harry Asada

Massachusetts Institute of Technology, Cambridge, MA

Paper No. DSCC2011-6134, pp. 595-601; 7 pages
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, Volume 2
  • Arlington, Virginia, USA, October 31–November 2, 2011
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5476-1
  • Copyright © 2011 by ASME


Endothelial cells (ECs) create a vascular network with a tubular structure in response to growth factors diffused into the gel and interactions with the surrounding environment. Individual cells migrate in response to all of these cues, leading to network pattern formation. This paper presents a dynamic model predicting EC sprout growth that is tuned to time-lapse experimental cell migration data obtained from microfluidic 3D culture. Simple cell migration equations with just a few parameters are formulated and a Maximum Likelihood estimator is used for estimating model parameters from experimental data. The tuned model is used to evaluate the influence of different sprout elongation rates on cell density in the sprout stalk. This quantitative modeling approach will lead to input shaping and feedback control to optimize sprouting metrics such as stalk cell density.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In