Full Content is available to subscribers

Subscribe/Learn More  >

Long-Range Temporal Correlations, Multifractality, and the Causal Relation Between Neural Inputs and Movements

[+] Author Affiliations
Jianbo Gao

PMB Intelligence LLC; Wright State University, Dayton, OH

Yi Zheng

PMB Intelligence LLC, West Lafayette, IN

Jing Hu

Affymetrix, Inc., Santa Clara, CA

Paper No. DSCC2011-6081, pp. 565-572; 8 pages
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, Volume 2
  • Arlington, Virginia, USA, October 31–November 2, 2011
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5476-1
  • Copyright © 2011 by ASME


Understanding the causal relation between neural inputs and movements is very important for the success of brain machine interfaces (BMIs). In this study, we perform systematic statistical and information theoretical analysis of neuronal firings of 104 neurons, and employ three different types of fractal and multifractal techniques (including Fano factor analysis, multifractal detrended fluctuation analysis (MF-DFA), and wavelet multifractal analysis) to examine whether neuronal firings related to movements may have long-range temporal correlations. We find that MF-DFA and wavelet multifractal analysis (but not Fano factor analysis) clearly indicate that when neuronal firings are not well correlated with movement trajectory, they do not have or only have weak temporal correlations. When neuronal firings are well correlated with movements, they are characterized by very strong temporal correlations, up to a time scale comparable to the average time between two successive reaching tasks. This suggests that neurons well correlated with hand trajectory experienced a “re-setting” effect at the start of each reaching task. We further discuss the significance of the coalition of those important neurons in executing cortical control of prostheses.

Copyright © 2011 by ASME
Topics: Motion



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In