Full Content is available to subscribers

Subscribe/Learn More  >

The Application of Bioinspired Jumping Locomotion Principles to Mobile Robots: Modeling and Analysis

[+] Author Affiliations
Omar Gilani, Pinhas Ben-Tzvi

George Washington University, Washington, DC

Paper No. DSCC2011-6108, pp. 427-434; 8 pages
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, Volume 2
  • Arlington, Virginia, USA, October 31–November 2, 2011
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5476-1
  • Copyright © 2011 by ASME


Nature provides various alternative locomotion strategies which could be applied to robotic systems. One such strategy is that of jumping, which enables centimeter to millimeter-scaled insects to traverse highly unstructured environments quickly and efficiently. These insects generate the required high magnitude power through specialized structures which store and rapidly release large amounts of energy. This paper presents an investigation into the morphology of natural jumpers and derives a generalized mathematical model based on them. The model describes mathematically the relationships present in a jumping system which uses a pause-and-leap jumping strategy. The use of springs as energy storage elements for such a jumping system is assessed. The discussion is then further extended to another bioinspired approach that can be applied to a jumping robot: that of gliding using foldable wings. The developed jumping and gliding mobility paradigm is analyzed and its feasibility for mobile robot applications is discussed.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In