0

Full Content is available to subscribers

Subscribe/Learn More  >

Evaluation of Spray Characteristics in Pharmaceutical Tablet Coating Processes: The Influences of Drum Rotational Speed and Drying Air Flow Rate

[+] Author Affiliations
Ariel R. Muliadi, Paul E. Sojka

Purdue University, West Lafayette, IN

Paper No. IMECE2009-12678, pp. 371-382; 12 pages
doi:10.1115/IMECE2009-12678
From:
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 3: Combustion Science and Engineering
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4376-5 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME

abstract

In this study, drop size, velocity, and volume flux for sprays produced by a pharmaceutical nozzle (Spraying Systems 1/4-JAU-SUE15A-PA67288–45°-SS) were characterized using a Fiber-PDA system (Dantec). Spraying was performed in a 120 cm (24 in) diameter tablet pan-coater (Accela-Cota Model 10, Thomas Engineering, UK). The separate influences of drum rotational speed and drying air flow rate were studied by making measurements at four different pan-coater operating conditions: stationary drum with drying air turned on/off, and 8 rpm rotating drum with drying air turned on/off. For each case, four different spraying conditions (liquid supply rate and atomizing air pressure) were used. PDA scans were performed along the spray semi-major and semi-minor axes at two different axial distances (7.5 and 10 cm) from the atomizer tip. Results were as follows. When both the drying air and drum rotation were absent, increasing liquid supply rate while operating the atomizer at the lower of two atomizing air pressures decreased drop size. The opposite occurred when operating at the higher of the two atomizing air pressures. This suggests that the nozzle operated as a simplex pressure-swirl atomizer at lower levels of atomizing air pressure, but as an air-assist atomizer at higher levels of atomizing air pressure. Regardless, liquid supply rate had no significant effect on drop velocity. In contrast, a decrease in atomizing air pressure or an increase in axial distance always led to an increase in drop size and a decrease in drop velocity. Supplying drying air to the pan-coater resulted in up to a 6 m/s increase in drop velocity, but had mixed effects on drop size. When the spray gun was operated as an air assist atomizer, supplying drying air to the drum led to an increase in D32 . The reverse was observed when the gun operated as a simplex pressure-swirl atomizer. These two observations are most evident when operating at the lower liquid supply rate (70 g/min), suggesting that they may have arisen from drop evaporation. Increasing the drying air supply rate also reduced spray extent and volume flux magnitude. Adding drum rotation to the process generally led to (i) increased drop size and (ii) increased drop velocity. (i) likely arose from the transport of small drops away from the spray zone, while (ii) likely resulted from changes in droplet trajectories. Both are the result of the gas-phase swirling motion that is due to the drum rotation. (i) was most noticeable when the nozzle was operated as an air-assist atomizer. In addition, drum rotation decreased spray volume flux magnitude at the spray center, but increased it at other locations, essentially making the spray more dumbbell-shaped. Finally, the influence of drum rotation on drop velocity diminished when drying air flow was included. This was because the drying air momentum helped the drops oppose the effects of the swirling flow induced by the drum rotations.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In