0

Full Content is available to subscribers

Subscribe/Learn More  >

Optimal Energy Management for a Hybrid Vehicle Using Neuro-Dynamic Programming to Consider Transient Engine Operation

[+] Author Affiliations
Rajit Johri, Ashwin Salvi, Zoran Filipi

University of Michigan, Ann Arbor, MI

Paper No. DSCC2011-6138, pp. 279-286; 8 pages
doi:10.1115/DSCC2011-6138
From:
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, Volume 2
  • Arlington, Virginia, USA, October 31–November 2, 2011
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5476-1
  • Copyright © 2011 by ASME

abstract

This paper proposes a self-learning approach to develop optimal power management with multiple objectives, e.g. to minimize fuel consumption and transient engine-out NOx and particulate matter emission for a series hydraulic hybrid vehicle. Addressing multiple objectives is particularly relevant in the case of a diesel powered hydraulic hybrid since it has been shown that managing engine transients can significantly reduce real-world emissions. The problem is formulated as an infinite time horizon stochastic sequential decision making/markovian problem. The problem is computationally intractable by conventional Dynamic programming due to large number of states and complex modeling issues. Therefore, the paper proposes an online self-learning neural controller based on the fundamental principles of Neuro-Dynamic Programming (NDP) and reinforcement learning. The controller learns from its interactions with the environment and improves its performance over time. The controller tries to minimize multiple objectives and continues to evolve until a global solution is achieved. The control law is a stationary full state feedback based on 5 states and can be directly implemented. The controller performance is then evaluated in the Engine-in-the-Loop (EIL) facility.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In