Full Content is available to subscribers

Subscribe/Learn More  >

Speed Improvement in Electrical Capacitance Tomography Through a Multiple Excitation and Receiving Method

[+] Author Affiliations
Zhaoyan Fan, Robert X. Gao

University of Connecticut, Storrs, CT

Paper No. DSCC2011-6031, pp. 153-158; 6 pages
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, Volume 2
  • Arlington, Virginia, USA, October 31–November 2, 2011
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5476-1
  • Copyright © 2011 by ASME


Electrical Capacitance Tomography (ECT) is a method to determine the material distribution within the interior of a closed object by measuring the capacitance values across externally mounted electrodes. Traditionally, an AC excitation pulse is applied to a pair of electrodes that form a capacitor during each measurement step, in order to determine the capacitance from the output current measured. This paper investigates how the speed of inter-electrode capacitance measurement can be improved by comparatively studying three methods that affect the way electrodes are excited and signals are received: 1) multiple-excitation-single-receiving, 2) single-excitation-multiple-receiving, and 3) multiple-excitation-multiple-receiving. A PSPICE circuit model was built to simulate the bandwidth and interference between the simultaneously sampled measurement channels. Simulations using ECT sensors with 8 and 12-electrodes have shown that measurement speed can be increased by up to 3 ∼ 30 times as compared to the traditional mode of capacitance measurement. Such new capability opens up new possibilities for ECT as an effective tool for online, real-time monitoring of a wide range of dynamical processes in the industry.

Copyright © 2011 by ASME
Topics: Capacitance



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In