Full Content is available to subscribers

Subscribe/Learn More  >

Screw Theory Applied to a Rigid Cylinder Moving on a Plane

[+] Author Affiliations
James Díaz-González

BMT Designers and Planner Inc., Arlington, VA

Lourdes Rosario

University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico

Paper No. DSCC2011-5908, pp. 49-56; 8 pages
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, Volume 2
  • Arlington, Virginia, USA, October 31–November 2, 2011
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5476-1
  • Copyright © 2011 by ASME


In this work a mathematical model of the motion of a cylinder moving on a plane is deduced using screw theory. The linear Coulomb friction equations are applicable for the maximum static and kinetic friction forces. In the case of the rolling motion of a cylinder, the friction forces are not necessarily maxima. This paper describes the dynamic states of motion of a cylindrical part moving in three separate scenarios by the Euler dual equation. The first scenario is when the cylinder is moving on a horizontal static plane due to an external harmonic force proportional to the mass of the part. For this case, the sliding conditions are expressed as a function of the vibration parameters and generalized based on a harmonic dimensionless variable. The second and third scenarios are when the cylinder is moving by translational displacements on a horizontal and inclined plane.

Copyright © 2011 by ASME
Topics: Screws , Cylinders



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In