Full Content is available to subscribers

Subscribe/Learn More  >

Physically-Based Volumetric Efficiency Model for Diesel Engines Utilizing Variable Intake Valve Actuation

[+] Author Affiliations
Lyle Kocher, Ed Koeberlein, D. G. Van Alstine, Karla Stricker, Greg Shaver

Purdue University, West Lafayette, IN

Paper No. DSCC2011-5997, pp. 913-920; 8 pages
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, Volume 1
  • Arlington, Virginia, USA, October 31–November 2, 2011
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5475-4
  • Copyright © 2011 by ASME


Advanced diesel engine architectures employing flexible valve trains enable emissions reductions and fuel economy improvements. Flexibility in the valve train allows engine designers to optimize the gas exchange process in a manner similar to how common rail fuel injection systems enable optimization of the fuel injection process. Modulating valve timings directly impacts the volumetric efficiency of the engine. In fact, the control authority of valve timing modulation over volumetric efficiency is three times larger than that due to any other engine actuator. Traditional empirical or regression-based models for volumetric efficiency, while suitable for conventional valve trains, are therefore challenged by flexible valve trains. The added complexity and additional empirical data needed for wide valve timing ranges limit the usefulness of these methods. A physically-based volumetric efficiency model was developed to address these challenges. The model captures the major physical processes occurring over the intake stroke, and is applicable to both conventional and flexible valve trains. The model inputs include temperature and pressure in the intake and exhaust manifolds, intake and exhaust valve timings, bore, stoke, connecting rod length, engine speed and effective compression ratio, ECR. The model is physically-based, requires no regression tuning parameters, is generalizable to other engine platforms, and has been experimentally validated using an advanced multi-cylinder diesel engine equipped with a flexible variable intake valve actuation system. Experimental data was collected over a wide range of the operating space of the engine and augmented with air handling actuator and intake valve timing sweeps to maximize the range of conditions used to thoroughly experimentally validate the model for a total of 217 total operating conditions. The physical model developed differs from previous physical modeling work through the novel application of ECR, incorporation of no tuning parameters and extensive validation on unique engine test bed with flexible intake valve actuation.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In