0

Full Content is available to subscribers

Subscribe/Learn More  >

Oxygen Concentration Dynamic Model Through a Diesel Engine Aftertreatment System

[+] Author Affiliations
Pingen Chen, Junmin Wang

The Ohio State University, Columbus, OH

Paper No. DSCC2011-6035, pp. 867-874; 8 pages
doi:10.1115/DSCC2011-6035
From:
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, Volume 1
  • Arlington, Virginia, USA, October 31–November 2, 2011
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5475-4
  • Copyright © 2011 by ASME

abstract

This paper presents a control-oriented model describing the dynamics of oxygen concentration through a Diesel engine aftertreatment system that includes a Diesel oxidation catalyst (DOC) and a Diesel particulate filter (DPF). Exhaust gas oxygen concentration is important for catalysts such as NOx conversion efficiencies of selective catalytic reduction (SCR) systems and lean NOx traps (LNT). In the presence of low-pressure loop exhaust gas recirculation (EGR), the exhaust gas oxygen concentration after-DPF also influences combustion. Due to the chemical reactions occurring inside DOC and DPF, the exhaust gas oxygen concentration considerably varies through the aftertreatment systems. Directly measuring the exhaust gas oxygen concentrations at different locations through the exhaust gas aftertreatment system is costly and unreliable. A dynamic model is thus needed in order to design model-based observers to estimate the exhaust gas oxygen concentrations at various locations. The oxygen-related reactions within a DOC and a DPF are investigated in this study. A lumped-parameter, control-oriented DOC-DPF oxygen concentration dynamic model was developed by a multi-objective optimization method and validated with experimental data obtained on a medium-duty Diesel engine equipped with full aftertreatment systems. Experimental results show that the model can well capture the oxygen dynamics across the Diesel engine aftertreatment systems.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In