Full Content is available to subscribers

Subscribe/Learn More  >

Micropositioning of a Multimaterial Electrohydrodynamic Jet Deposition System Using Vision Feedback

[+] Author Affiliations
Erick Sutanto, David J. Hoelzle, Andrew G. Alleyne, Kazuyo Shigeta, John A. Rogers

University of Illinois at Urbana-Champaign, Urbana, IL

Paper No. DSCC2011-6100, pp. 851-857; 7 pages
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, Volume 1
  • Arlington, Virginia, USA, October 31–November 2, 2011
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5475-4
  • Copyright © 2011 by ASME


This paper presents the micropositioning of a multimaterial Electrohydrodynamic-Jet (E-jet) deposition system with vision feedback. E-jet printing has been recognized as an emerging direct write technology for micro/nano-manufacturing applications. Recent efforts have improved E-jet droplet resolution and printing speed. The next logical step is to increase the versatility of the printing system by increasing the number of materials that can be integrated to a single devise. Droplet resolution using E-jet deposition is generally less than 5μm in diameter, so it is necessary to accurately position the nozzle tip after successive head switching. Here, we divide the switching mechanism into two steps: macropositioning and micropositioning. The micropositioning is performed with a servo control with machine vision, resulting in a positioning accuracy of less than 2 μm. The efficacy of this approach is demonstrated through printing of a multimaterial pattern.

Copyright © 2011 by ASME
Topics: Feedback



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In