0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermodynamics-Based Optimization and Control of Vapor-Compression Cycle Operation: Control Synthesis

[+] Author Affiliations
Neera Jain, Andrew G. Alleyne

University of Illinois at Urbana-Champaign, Urbana, IL

Paper No. DSCC2011-6088, pp. 827-834; 8 pages
doi:10.1115/DSCC2011-6088
From:
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, Volume 1
  • Arlington, Virginia, USA, October 31–November 2, 2011
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5475-4
  • Copyright © 2011 by ASME

abstract

This paper considers the implementation of an exergy-based multiple degree of freedom (MDOF) optimization and control methodology for the operation of VCC systems. The optimization problem for the standard VCC is characterized in terms of 4 thermodynamic variables and 1 fluid-dynamic variable. The resulting control problem is then analyzed, and a design variable, Λ, is introduced which allows the user to choose how the optimization variables are projected onto a control space of lower dimension. The potential of this approach to improve operational efficiency, with respect to both first and second law efficiency metrics, is demonstrated on an experimental VCC system through implementation of the proposed optimization using a feedforward plus feedback control architecture.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In