0

Full Content is available to subscribers

Subscribe/Learn More  >

Ritz Model of a Lead-Acid Battery With Application to Electric Locomotives

[+] Author Affiliations
Zheng Shen, Jun Gou, Christopher D. Rahn, Chao-Yang Wang

The Pennsylvania State University, University Park, PA

Paper No. DSCC2011-6040, pp. 713-720; 8 pages
doi:10.1115/DSCC2011-6040
From:
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, Volume 1
  • Arlington, Virginia, USA, October 31–November 2, 2011
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5475-4
  • Copyright © 2011 by ASME

abstract

Pb-Acid batteries are excellent candidates for hybrid and electric locomotive, primarily due to their low cost. Model-based design, estimation, and control of a Pb-Acid energy storage system for a locomotive requires the development of efficient and accurate models. This paper presents a first principles model based on the fundamental governing equations of species and charge conservation for a Pb-Acid cell. The governing equations are discretized using a Ritz method to produce a low order and numerically efficient model that simulates over 20 times faster than CFD. The Ritz model outputs variables of interest such as voltage and internal potential, current, and concentration distributions in response to the current input. The Ritz model can be cast in state variable form, making it amenable to systems analysis using Matlab and model-based estimator and controller design. The accuracy of the Ritz model decreases with increasing charge/discharge rate, low or high State of Charge, and increasing charge/discharge time due to linearization of the Butler-Volmer equation, linearization of the open circuit voltage, and constant porosity assumptions, respectively. Finally, the time constant during charge is significantly different than that during discharge due to different specific areas, motivating the use of a time-varying model.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In