0

Full Content is available to subscribers

Subscribe/Learn More  >

Heat Flux Estimation in Direct Chill Casting Using Experimental and Inverse Finite Element Method

[+] Author Affiliations
Ashok Kumar Nallathambi, Umair Alam, Eckehard Specht

Otto-von-Guericke-University Magdeburg, Magdeburg, Germany

Paper No. HT2008-56500, pp. 685-691; 7 pages
doi:10.1115/HT2008-56500
From:
  • ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences
  • Heat Transfer: Volume 1
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4847-0 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME

abstract

In Direct Chill (DC) non-ferrous metal casting, water is used as a cooling medium to extract the heat from the solidified outer layer of the ingot which supports the inner molten metal. Insufficient or excessive water supply changes the heat flux which is favorable for the growth of micro-cracks. This work presents the combined experimental and numerical technique to estimate the heat flux in the DC nickel casting. Experimental techniques are explained for the measurement of temperature. A two-dimensional Inverse Heat Conduction Problem (IHCP) is solved through the non-iterative Finite Element Method (FEM) using the experimental temperature data. Wetting front which separates the film boiling and nucleate boiling zone, changes the order of the heat flux. Maximum heat flux position and its propagation velocity are plotted as a function of time. It is demonstrated that increase in water velocity decreases the maximum heat flux and delays the wetting front movement.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In