0

Full Content is available to subscribers

Subscribe/Learn More  >

A Higher-Order Method for Dynamic Optimization of Controllable LTI Systems

[+] Author Affiliations
Damiano Zanotto, Giulio Rosati

University of Padua, Padua, Italy

Sunil K. Agrawal

University of Delaware, Newark, DE

Paper No. DSCC2011-5964, pp. 613-620; 8 pages
doi:10.1115/DSCC2011-5964
From:
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, Volume 1
  • Arlington, Virginia, USA, October 31–November 2, 2011
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5475-4
  • Copyright © 2011 by ASME

abstract

This work describes a new procedure for dynamic optimization of controllable Linear time-invariant (LTI) systems. Unlike the traditional approach, which results in 2 n first order differential equations, the method proposed here yields a set of m differential equations, whose highest order is twice the controllability index of the system p. This paper generalizes the approach presented in a previous work [1] to any controllable LTI system.

Copyright © 2011 by ASME
Topics: Optimization

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In