0

Full Content is available to subscribers

Subscribe/Learn More  >

Dynamics and Control of the Reaction Mass Pendulum (RMP) as a 3D Multibody System: Application to Humanoid Modeling

[+] Author Affiliations
Amit K. Sanyal

New Mexico State University, Las Cruces, NM

Ambarish Goswami

Honda Research Institute US, Mountain View, CA

Paper No. DSCC2011-6086, pp. 589-596; 8 pages
doi:10.1115/DSCC2011-6086
From:
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, Volume 1
  • Arlington, Virginia, USA, October 31–November 2, 2011
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5475-4
  • Copyright © 2011 by ASME

abstract

Humans and humanoid robots are often modeled with different types of inverted pendulum models in order to simplify the dynamic analysis of gait, balance and fall. We have earlier introduced the Reaction Mass Pendulum (RMP), an extension of the traditional inverted pendulum models, which explicitly captures the variable rotational inertia and angular momentum of the human or humanoid. In this paper we present a thorough analysis of the RMP, which is treated as a 3D multibody system in its own right. We derive the complete kinematics and dynamics equations of the RMP system and obtain its equilibrium conditions. Next we present a nonlinear control scheme that stabilizes this underactuated system about an unstable set with a vertically upright configuration for the “leg” of the RMP. Finally we demonstrate the effectiveness of this controller in simulation.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In