0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental and Theoretical Analysis of the Nanoscale Crater Generation With a Near Field Scanning Optical Tip

[+] Author Affiliations
Sy-Bor Wen

Texas A&M University, College Station, TX

Paper No. HT2008-56489, pp. 647-663; 17 pages
doi:10.1115/HT2008-56489
From:
  • ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences
  • Heat Transfer: Volume 1
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4847-0 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME

abstract

Different nano-patterns have been generated with the same near field scanning optical microscope (NSOM) tips with multiple femtosecond laser pulses in different background gases. It is demonstrated that significant energy was transferred from the NSOM probe to a pure silicon surface for the generation of nano-protrusions and nano-craters, which shows the possibility of nano-fabrication with the present experimental configuration. In order to understand the heating effect of the target and the relationship between the generations of nano-craters, a corresponding theoretical analysis considering the wave format light propagation within a single tapering NSOM probe (first order approximation) and the subsequent light absorption in a target is established. This analysis show that electron temperature of around the nano-scale laser spot of target can be very high (>∼10,000 K) during the laser pulse. However, both the photoexcited electron number density and lattice temperature are much less the threshold for a thermal and non-thermal evaporation. Therefore, supplementary mechanisms in additional to pure pulsed light absorption are required for generation of nano-craters on a target if a single tapering angle NSOM probe is applied.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In