Full Content is available to subscribers

Subscribe/Learn More  >

Linearization and Model Reduction of Contact Dynamics Simulation

[+] Author Affiliations
Jianxun Liang, Ou Ma

New Mexico State University, Las Cruces, NM

Caishan Liu

Peking University, Beijing, China

Paper No. DSCC2011-6122, pp. 541-548; 8 pages
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, Volume 1
  • Arlington, Virginia, USA, October 31–November 2, 2011
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5475-4
  • Copyright © 2011 by ASME


Finite element methods are widely used for simulations of contact dynamics of flexible multibody systems. Such a simulation is computationally very inefficient because the system’s dimension is usually very large and the simulation time step has to be very small in order to ensure numerical stability. A potential solution to the problem is to apply a model reduction method in the simulation. Although many model reduction techniques have been developed, most of them cannot be readily applied due to the high nonlinearity of the involved contact dynamics model. This paper presents a solution to the problem. The approach is based on a modified Lyapunov balanced truncation method. A numerical example is presented to demonstrate that, by applying the proposed model reduction method, the simulation process can be significantly speeded up while the resulting error caused by the model reduction is still within an acceptable level.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In