0

Full Content is available to subscribers

Subscribe/Learn More  >

Transient Heat Transfer From Single Horizontal Heaters in Forced Flow of Helium Gas at Exponentially Increasing Heat Inputs

[+] Author Affiliations
Qiusheng Liu, Katsuya Fukuda, Makoto Shibahara

Kobe University, Hyogo, Japan

Paper No. HT2008-56274, pp. 585-595; 11 pages
doi:10.1115/HT2008-56274
From:
  • ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences
  • Heat Transfer: Volume 1
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4847-0 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME

abstract

Forced convection transient heat transfer for helium gas at various periods of exponential increase of heat input to a horizontal cylinder and a plate (ribbon) was experimentally and theoretically studied. It was clarified that the heat transfer coefficient approaches the quasi-steady-state one for the period longer than about 1 s, and it becomes higher for the period shorter than around 1 s. The dependence of transient heat transfer on the gas flowing velocity becomes weaker when the period becomes very shorter. However, the gas temperature in this study shows little influence on the heat transfer coefficient. Empirical correlations for quasi-steady-state heat transfer and transient heat transfer were obtained based on the experimental data. In the theoretical study, transient heat transfer was numerically solved based on a turbulent flow model. The values of numerical solution for surface temperature and heat flux were compared and discussed with authors’ experimental data. It was clarified that the surface superheat and heat flux increase exponentially as the heat generation rate increases with the exponential function. The temperature distribution near the heater becomes larger as the surface temperature increases. The values of numerical solution for surface temperature and heat flux agree well with the experimental data for the cylinder diameter of 1 mm. However, the heat fluxes show some differences from the experimental values for the cylinder diameters of 0.7 mm and 2.0 mm. And for the numerical solution for a plate, the values of numerical solutions for surface temperature and heat flux at the velocity of 6 m/s agree well with the experimental data, though they show some differences at other velocities.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In