Full Content is available to subscribers

Subscribe/Learn More  >

Development of a Flow Regime Map for a Horizontal Pipe With the Multi-Classification Support Vector Machines

[+] Author Affiliations
L. M. Tam, H. K. Tam, S. C. Tam

University of Macau, Taipa, Macau, China

A. J. Ghajar

Oklahoma State University, Stillwater, OK

Paper No. HT2008-56094, pp. 537-547; 11 pages
  • ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences
  • Heat Transfer: Volume 1
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4847-0 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME


For horizontal circular pipes under uniform wall heat flux boundary condition and three different inlet configurations (re-entrant, square-edged, bell-mouth), Ghajar and Tam (1995) developed flow regime maps for the determination of the boundary between single-phase forced and mixed convection using experimental data of Ghajar and Tam (1994). Based on the ratio of the local peripheral heat transfer coefficient at the top and the bottom, the heat transfer data was classified as either forced or mixed convection among the different flow regimes. The forced-mixed convection boundary was then obtained by empirical correlations. From the flow maps, heat transfer correlations for different flow regimes were recommended. Recently Trafalis et al. (2005) used the Multiclass Support Vector Machines (SVM) method to classify vertical and horizontal two-phase flow regimes in 4 pipes with good accuracy. In this study, the SVM method was applied to the single-phase experimental data of Ghajar and Tam (1994) and new flow regime maps were developed. Five flow regimes (forced turbulent, forced transition, mixed transition, forced laminar, mixed laminar) were identified in the flow maps using Reynolds and Rayleigh numbers as the identifying parameters. The flow regimes on the boundaries of the new maps were represented by the SVM decision functions. The results show that the new flow regime maps for the three types of inlets can classify the forced and mixed convection experimental data in different flow regimes with good accuracy.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In