Full Content is available to subscribers

Subscribe/Learn More  >

VSC Approach Angle Based Boundary Layer Thickness: A New Variation Law and Its Stability Proof

[+] Author Affiliations
J. Falcão Carneiro, F. Gomes de Almeida

Universidade do Porto, Porto, Portugal

Paper No. DSCC2011-5948, pp. 457-464; 8 pages
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, Volume 1
  • Arlington, Virginia, USA, October 31–November 2, 2011
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5475-4
  • Copyright © 2011 by ASME


A major drawback on the use of sliding mode controllers is their inherent intense control activity. A usual strategy to cope with this problem is to use a boundary layer around the switching surface. The boundary layer thickness choice is based on a compromise between smoothness in the control action and tracking error. Since this compromise may be difficult to achieve, several boundary layer thickness variation laws (BLTVL) have been proposed in literature. In a recent study [1] an interesting BLTVL was proposed, based on the approach angle of the state to the switching surface. Although innovative, that study does not provide a proof of the stability of the controller. Furthermore, the BLTVL definition varies according to the system order and sliding surface definition. This paper extends the work done in [1] by presenting a new BLTVL based on a generalised definition of the approach angle that can be applied to systems of any order using any sliding surface. Furthermore, an innovative stability proof of a variable structure controller (VSC) using the new BLTVL is provided. Experimental results obtained in a servopneumatic system validate the usefulness of this approach.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In