Full Content is available to subscribers

Subscribe/Learn More  >

Prediction of Natural Convection Heat Transfer in Layered Porous Cavities by Homogeneous Anisotropic Model

[+] Author Affiliations
R. L. Marvel, F. C. Lai

University of Oklahoma, Norman, OK

Paper No. HT2008-56111, pp. 427-437; 11 pages
  • ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences
  • Heat Transfer: Volume 1
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4847-0 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME


Steady-state heat transfer by natural convection in a layered porous cavity is examined by using homogeneous anisotropic model. The geometry considered is a two-dimensional square enclosure comprising of three or four porous layers with non-uniform thickness and distinct permeability. The cavity is subjected to differential heating from the vertical walls. The results, which include the flow patterns and temperature profiles as well as the heat transfer coefficients, are presented for a wide range of permeability ratio, sublayer thickness ratio, and Rayleigh number. Particularly, the heat transfer results obtained are compared with those reported from a rigorous numerical model for layered porous media. In addition, the results are compared with the lumped system model that was proposed recently. It has been found that homogeneous anisotropic model predicts the heat transfer coefficient reasonably well within the conductive flow regime. However, beyond this regime, the model fails to represent the layered case for the effective permeabilities and sublayer thickness ratios considered. On the other hand, it is observed that the lumped system model offers better agreement to the heat transfer coefficient of the actual layered porous system over a wider range of parameters and which also significantly reduces computational efforts.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In