Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Brownian and Thermophoretic Diffusions of Nanoparticles on Nonequilibrium Heat Conduction in Nanofluids

[+] Author Affiliations
Yuwen Zhang, Ling Li, H. B. Ma

University of Missouri, Columbia, MO

Paper No. HT2008-56444, pp. 401-411; 11 pages
  • ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences
  • Heat Transfer: Volume 1
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4847-0 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME


Effects of Brownian and thermophoretic diffusions on nonequilibrium heat conduction in a nanofluid layer with periodic heat flux on one side and specified temperature on the other side are investigated numerically. The problem are described by eight dimensionless parameters: density ratio, heat capacity ratio, Lewis number, Soret coefficient, initial volume fraction of nanoparticles, initial temperature, Sparrow number, and period of the surface heat flux. Effects of Brownian and thermophoretic diffusions of nanoparticles on nonequilibrium heat conduction in nanofluid obtained by dispersing copper nanoparticles into ethylene glycol are investigated. The results showed that the Brownian and thermophoretic diffusions only affect the nanoparticle temperature but their effect on the heat transfer enhancement is negligible.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In