0

Full Content is available to subscribers

Subscribe/Learn More  >

Curvature Effect on the Thermal Conductivity of Nanowires

[+] Author Affiliations
Liang-Chun Liu

National Taiwan University, Taipei, Taiwan; University of Colorado-Boulder, Boulder, CO

Mei-Jiau Huang

National Taiwan University, Taipei, Taiwan

Ronggui Yang

University of Colorado-Boulder, Boulder, CO

Paper No. HT2008-56339, pp. 369-372; 4 pages
doi:10.1115/HT2008-56339
From:
  • ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences
  • Heat Transfer: Volume 1
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4847-0 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME

abstract

Directional preference of the ballistic phonon transport plays an important role in the effective thermal conductivity of nanostructures. Curved nanowires can have very different thermal conductivities from straight ones. In this work, a Monte-Carlo simulator is developed and used to investigate the curvature effect on the phonon transport in silicon nanowires. The results show that the curvature of geometry does not alter the phonon transport efficiency in large wires but decreases the effective thermal conductivity in their nano-sized counterparts.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In