0

Full Content is available to subscribers

Subscribe/Learn More  >

Mean-Field Bounds and the Classical Nature of Thermal Conduction in Nanofluids

[+] Author Affiliations
Jacob Eapen

North Carolina State University, Raleigh, NC

Paper No. HT2008-56089, pp. 343-344; 2 pages
doi:10.1115/HT2008-56089
From:
  • ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences
  • Heat Transfer: Volume 1
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4847-0 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME

abstract

The initial promise of nanofluids as an advanced, nanoengineered coolant has been tempered in the recent years by a conspicuous lack of consensus on its thermal conduction mechanism. Several new mechanisms have been hypothesized in the recent years to characterize the thermal conduction behavior in nanofluids. In this presentation, we show that a large set of nanofluid thermal conductivity data is enveloped by the well-known Hashin and Shtrikman (H-S) mean-field bounds for inhomogeneous systems. The thermal conductivity in nanofluids, therefore, is largely dependent on whether the nanoparticles stays dispersed in the base fluid, form linear chain-like configurations, or assume an intermediate configuration. The experimental data, which is strikingly analogous to those in most solid composites and liquid mixtures, provides a strong evidence for the classical nature of thermal conduction in nanofluids.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In