Full Content is available to subscribers

Subscribe/Learn More  >

High-Speed 4-Way Rotary On/Off Valve for Virtually Variable Displacement Pump/Motor Applications

[+] Author Affiliations
Haink C. Tu, Michael B. Rannow, Meng Wang, Perry Y. Li, Thomas R. Chase, Kai Loon Cheong

University of Minnesota, Minneapolis, MN

Paper No. DSCC2011-6109, pp. 201-208; 8 pages
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, Volume 1
  • Arlington, Virginia, USA, October 31–November 2, 2011
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5475-4
  • Copyright © 2011 by ASME


The application of switched mode control to hydraulic systems has the potential of decreasing component complexity, size, and cost. This is accomplished by enabling variable pump or motor functionality using a single on/off valve paired with a compact, inexpensive fixed displacement machine. A 4-way tandem rotary on/off valve is presented in this paper that extends a novel rotary valve concept (experimentally validated for pump applications) to hydraulic pump/motors. The pump/valve system is referred to as a Virtually Variable Displacement Pump/Motor (VVDPM) since the effective displacement of the system is variable and not the physical displacement of the pump itself. This paper investigates the design and efficiency of the proposed rotary valve when utilizing the VVDPM on a light weight power-split hydraulic hybrid passenger vehicle that is driven over a standard federal drive cycle. Simulated VVDPM efficiency maps are presented for motoring and pumping and the cycle efficiency of an optimized VVDPM is compared to that of a typical bent axis unit. Vehicle fuel economy is also explored through simulation.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In