Full Content is available to subscribers

Subscribe/Learn More  >

Turbulent Natural Convection in a Differentially Heated Vertical Channel

[+] Author Affiliations
Abolfazl Shiri, William K. George

Chalmers University of Technology, Gothenburg, Sweden

Paper No. HT2008-56333, pp. 285-291; 7 pages
  • ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences
  • Heat Transfer: Volume 1
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4847-0 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME


The turbulence natural convection boundary layer inside a infinite vertical channel with differentially heated walls is analyzed based on a similarity solution methodology. The differences between mean temperature and velocity profiles in a boundary layer along a vertical flat plate and in a channel flow, make it necessary to introduce new sets of scaling parameters. In the limit as H* → ∞, two distinctive parts are considered: an outer region which dominates the core of the flow and inner constant heat flux region close to the walls. The proper inner scaling velocity is showed to be determined by the outer parameters due to momentum integral. The theory is contrasted with the one suggested by George & Capp (1), the deficiencies of which are identified.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In