0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Study and Modeling of Equilibrium Point Trajectory Control in Single and Double-Joint Arm Movements

[+] Author Affiliations
Kai Chen, Richard A. Foulds, Katharine Swift, Sergei Adamovich

New Jersey Institute of Technology, Newark, NJ

Paper No. IMECE2009-10251, pp. 355-359; 5 pages
doi:10.1115/IMECE2009-10251
From:
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 2: Biomedical and Biotechnology Engineering
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4375-8 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME

abstract

This paper discusses a new model of neuromuscular control of elbow and shoulder joints based on the Equilibrium Point Hypothesis (EPH). The earlier model [1] suggests that the incorporation of relative damping within reflex loops can maintain the dynamic simplicity of the EPH, while being robust over the range of human joint velocities. The model presented here, extends previous work with the use of experimental Electromyography data of 2 muscles to determine the timing parameters of the virtual trajectories and the inclusion of physiological time delays to account for neural transmission and muscle stimulation/activation delays. This model uses delays presented in the literature by other researchers, with a goal of contributing to a resolution of arguments regarding the controversial arguments in the planning sequences. Therefore, this study attempts to demonstrate the possibility for using descending CNS signals to represent relatively simple, monotonic virtual trajectories of the time varying Equilibrium Point for the control of human arm movement. In addition, the study demonstrates that these virtual trajectories were robust enough to control and coordinated movement of elbow and shoulder joints discussed.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In