Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Study Optimal Timing of the Axial Piston Pump

[+] Author Affiliations
Shusen Zhang, Noah D. Manring

University of Missouri – Columbia, Columbia, MO

Viral S. Mehta

Caterpillar Inc., Mossville, IL

Paper No. DSCC2011-5901, pp. 177-184; 8 pages
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, Volume 1
  • Arlington, Virginia, USA, October 31–November 2, 2011
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5475-4
  • Copyright © 2011 by ASME


In this paper, the theoretical optimal timing of the axial piston pump is first derived to confirm the analysis published by Professor Kevin Edge [1]. It is discovered that the optimal discharge port delay is different from the optimal inlet port delay. The dimensional analysis also shows that higher shaft angular velocity indicates less delay required in both discharge port and inlet port. Numerical studies show that optimal timing can reduce the dynamic pressure ripple greatly, but since it does not affect the kinematic component, it will not eliminate the entire pressure ripple. The optimal timing could also induce an increase in efficiency where the baseline pump design has cross-porting. However, there is certain tradeoff between pressure ripple reduction and efficiency consideration. Actual design consideration to affect independent timing of the portplate is not studied in this work.

Copyright © 2011 by ASME
Topics: Pumps , Pistons



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In