0

Full Content is available to subscribers

Subscribe/Learn More  >

Optimal Efficiency-Power Tradeoff for an Air Motor/Compressor With Volume Varying Heat Transfer Capability

[+] Author Affiliations
Andrew T. Rice, Perry Y. Li

University of Minnesota, Minneapolis, MN

Paper No. DSCC2011-6076, pp. 145-152; 8 pages
doi:10.1115/DSCC2011-6076
From:
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, Volume 1
  • Arlington, Virginia, USA, October 31–November 2, 2011
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5475-4
  • Copyright © 2011 by ASME

abstract

This paper presents the pressure-volume trajectories that yield the optimal tradeoff between efficiency and power during the compression and expansion of air. These results could benefit applications such as compressed air energy storage where both high efficiency and power density are required. Earlier work established solutions for the simple case in which hA, the product of the heat transfer coefficient and heat transfer surface area, is constant. This paper extends that analysis by allowing hA to vary with air volume. Solutions to the constrained, non-linear optimization problem are developed utilizing the method of Lagrange multipliers and Karush-Kuhn-Tucker (KKT) conditions. It is found that the optimal trajectory takes the form “fast-slow-fast” where the fast stages are adiabatic and the temperature change during the slow stage is proportional to the inverse root of the hA product. A case study predicts a 60% improvement in power over the constant-hA solution when both trajectories are run at 90% efficiency and hA = hA(V). Compared to linear- and sinusoidal-shaped trajectories, also at 90% efficiency, power gains are expected to be in the range of 500–1500%.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In