0

Full Content is available to subscribers

Subscribe/Learn More  >

A Computational Model of Scapulo-Humeral-Clavicle Complex via Multibody Dynamics

[+] Author Affiliations
Shanzhong Shawn Duan

South Dakota State University, Brookings, SD

Keith M. Baumgarten

Othopedic Institute, Sioux Falls, SD

Paper No. IMECE2009-12659, pp. 319-324; 6 pages
doi:10.1115/IMECE2009-12659
From:
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 2: Biomedical and Biotechnology Engineering
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4375-8 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME

abstract

The shoulder-upper arm complex has the most mobile joint in the body and is composed of three main bones: the collarbone (clavicle), the shoulder blade (scapula), and the upper arm bone (humerus). The shoulder joint is a non-concentric ball and socket joint. It differs from the hip, a highly stabilized, concentric ball and socket joint, that is constrained mostly by its osseous anatomy. Thus, the shoulder has more flexibility and less inherent stability than the hip because it is mainly stabilized by muscles, tendons, and ligaments. The relative decrease in stability of the shoulder compared to other joints puts the shoulder at increase risk of damage by disease or injury. The constraints added by muscles, tendons, and ligaments make modeling of the shoulder a challenge task. This paper presents a multi rigid body model to describe dynamical properties of the scapulo-humeral-clavicle complex. The bones are represented by rigid bodies, and the soft tissues (tendons, ligaments and muscles) are represented by springs and actuators attached to the rigid bodies. The rigid bodies are connected by ideal kinematic joints and have fixed centers of gravity. Equations of motion of the multi rigid body model are derived via Kane’s methods. Combination of springs and actuators includes independent variables for both motion and constraint forces, the sum of which determine the activation level.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In