Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Channel Height and Bulk Temperature Considerations on Heat Transfer Coefficient of Wetted Surfaces in a Single Inline Row Impingement Channel

[+] Author Affiliations
Mark Ricklick, Stephanie Kersten, V. Krishnan, J. S. Kapat

University of Central Florida, Orlando, FL

Paper No. HT2008-56323, pp. 181-190; 10 pages
  • ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences
  • Heat Transfer: Volume 1
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4847-0 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME


High performance turbine airfoils are typically cooled with a combination of internal cooling channels and impingement/film cooling. In such applications, the jets impinge against a target surface, and then exit along the channel formed by the jet plate, target plate, and side walls. Local convection coefficients are the result of both the jet impact, as well as the channel flow produced from the exiting jets. Numerous studies have explored the effects of jet array and channel configurations on both target and jet plate heat transfer coefficients. However, little work has been done in examining effects on the channel side walls, which may be a major contributor to heat transfer in real world applications. This paper examines the local and averaged effects of channel height and on heat transfer coefficients, with special attention given to the channel side walls. The effects on heat transfer results due to bulk temperature variations were also investigated. High resolution local heat transfer coefficient distributions on target and side wall surfaces were measured using temperature sensitive paint and recorded via a scientific grade charge-coupled device (CCD) camera. Streamwise pressure distributions for both the target and side walls was recorded and used to explain heat transfer trends. Results are presented for average jet based Reynolds numbers between 17,000 and 45,000. All experiments were carried out on a large scale single row, 15 hole impingement channel, with X/D of 5, Y/D of 4, and Z/D of 1, 3 and 5. The results obtained from this investigation will aid in the validation of predictive tools and development of physics-based models.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In