0

Full Content is available to subscribers

Subscribe/Learn More  >

Design and Control of a Compact and Flexible Pneumatic Artificial Muscle Actuation System: Part Two—Robust Control

[+] Author Affiliations
Sai-Kit Wu, Garrett Waycaster, Tad Driver, Xiangrong Shen

The University of Alabama, Tuscaloosa, AL

Paper No. DSCC2011-6068, pp. 61-67; 7 pages
doi:10.1115/DSCC2011-6068
From:
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control
  • ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, Volume 1
  • Arlington, Virginia, USA, October 31–November 2, 2011
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5475-4
  • Copyright © 2011 by ASME

abstract

A robust control approach is presented in this part of the paper, which provides an effective servo control for the novel PAM actuation system presented in Part I. Control of PAM actuation systems is generally considered as a challenging topic, due primarily to the highly nonlinear nature of such system. With the introduction of new design features (variable-radius pulley and spring-return mechanism), the new PAM actuation system involves additional nonlinearities (e.g. the nonlinear relationship between the joint angle and the actuator length), which further increasing the control difficulty. To address this issue, a nonlinear model based approach is developed. The foundation of this approach is a dynamic model of the new actuation system, which covers the major nonlinear processes in the system, including the load dynamics, force generation from internal pressure, pressure dynamics, and mass flow regulation with servo valve. Based on this nonlinear model, a sliding mode control approach is developed, which provides a robust control of the joint motion in the presence of model uncertainties and disturbances. This control was implemented on an experimental setup, and the effectiveness of the controller demonstrated by sinusoidal tracking at different frequencies.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In