0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Analysis for a Vapor Feed Miniature Direct Methanol Fuel Cell System

[+] Author Affiliations
Bin Xiao, Amir Faghri

University of Connecticut, Storrs, CT

Paper No. HT2008-56062, pp. 87-97; 11 pages
doi:10.1115/HT2008-56062
From:
  • ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences
  • Heat Transfer: Volume 1
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4847-0 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME

abstract

A two-dimensional, multiphase model is presented and analyzed for a vapor feed DMFC system. The DMFC model is based on the multiphase mixture formulation and encompasses all components in the porous regions of a vapor feed DMFC using a single computation domain. The evaporation/condensation phenomenon in the anode flow channel is modeled in a separated way. An iterative numerical scheme is used to solve the governing equations in a coupled manner. Numerical simulations are carried out to explore the transient and polarization characteristics of the DMFC, including methanol crossover through the membrane, temperature evolution, anodic and cathodic overpotentials. The results indicate the anode flow channel for the feeding methanol solution is the key parameter for the DMFC performance. The numerical results are also compared with the experimental data in a good agreement.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In