0

Full Content is available to subscribers

Subscribe/Learn More  >

Particle Flow Behavior in a Shear Cell Device

[+] Author Affiliations
Adam Rosenkrantz

Pennsylvania State University, University Park, PA

John Tichy

Rensselaer Polytechnic Institute, Troy, NY

Paper No. IJTC2011-61155, pp. 377-379; 3 pages
doi:10.1115/IJTC2011-61155
From:
  • ASME/STLE 2011 International Joint Tribology Conference
  • ASME/STLE 2011 Joint Tribology Conference
  • Los Angeles, California, USA, Oct 24–26, 2011
  • ISBN: 978-0-7918-5474-7
  • Copyright © 2011 by ASME

abstract

This presentation describes ongoing research performed on a simple shear cell apparatus, previously described [1]. As a complement, discrete particle simulations and continuum models have been used to predict normal and shear forces in the ongoing experiments. The trends and orders-of-magnitude of the models and experiment are in basic agreement. Theoretical models used are constructed with basic principles, rather than curve fitting, to obtain effective properties of the mixture such as viscosity or conductivity. The experiment itself serves to determine the effects of shear rate, packing fraction, particle size and film thickness on the load carrying normal stress. Additionally, the frictional shear stress can be investigated. The working particulate medium within the apparatus consists of glass of aluminum spheres, poly-dispersed over four size increments, all less than 1.00 mm diameter. The upper annular disk is held stationary in a rotational sense by a force transducer, and applies predetermined normal stress values which vary according to a system of interchangeable counterweights. The lower transfer surface and the sidewalls of the annular ring are rotated by applied mechanical torque. Experimental trials consist of shear initiation, after which the trough velocity, film thickness, supporting load, and frictional torque are measured. From these measurements one can calculate the average shear rate, the average load-carrying normal stress, the average frictional shear stress, and the solids volume fraction. Such third body granular flow may apply to some solid lubrication mechanisms, and to applications such as smart clutches and dampers. The continuum theory presented is unique in that it addresses solid-like behavior and its transition to fluidized behavior. The discrete particle dynamics rely on the conceptual models of Iordanoff and colleagues [2]. Our findings are that the two theoretical predictions agree reasonably with the experimental results, suggesting validity of the approach. These results are promising, and may be used to further develop high level predictive models. Furthermore, similar methods of small scale experimental particle simulation can be used to develop simpler more usable continuum approaches.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In