Full Content is available to subscribers

Subscribe/Learn More  >

Energy Efficient Hydrodynamic Journal Bearings by Means of Closed-Loop Controlled Lubrication Flow

[+] Author Affiliations
A. Albers, H. T. Nguyen, W. Burger

Karlsruhe Institute of Technology (KIT), Karlsruhe, Baden-Württemberg, Germany

Paper No. IJTC2011-61002, pp. 345-349; 5 pages
  • ASME/STLE 2011 International Joint Tribology Conference
  • ASME/STLE 2011 Joint Tribology Conference
  • Los Angeles, California, USA, Oct 24–26, 2011
  • ISBN: 978-0-7918-5474-7
  • Copyright © 2011 by ASME


State of the art of hydrodynamic journal bearing lubrication is realized by a significant oversupply with lubricant, causing energy losses due to fluid film friction in the unloaded areas of the bearing. Reducing the lubricant flow however may lead to overheating or collapse of the load carrying fluid film, both resulting in a complete failure of the journal bearing. A new approach to safely reduce the lubricant flow is presented in this paper, by using a broadband piezoelectric acoustic emission sensor to detect ultrasonic structure-borne noise, usually caused by metal-to-metal contact at boundary conditions. The method of structure-borne noise analysis has proven to be suitable for detecting the occurrence of solid friction [1–4]. By combining structure-borne noise analysis with a closed loop control of a proportional flow control valve a condition dependent lubricant flow can be set. Thus lubricant friction in the bearing is reduced and additionally electrical energy in the peripheral devices, such as pumps can be saved.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In