Full Content is available to subscribers

Subscribe/Learn More  >

Yield Inception of a Coated Substrate Indented by a Rigid Sphere

[+] Author Affiliations
Wenping Song

Harbin Institute of Technology, Harbin, Heilongjiang, China; University of California, San Diego, San Diego, CA

Longqiu Li, Ding Jia, Guangyu Zhang

Harbin Institute of Technology, Harbin, Heilongjiang, China

Andrey Ovcharenko, Frank E. Talke

University of California, San Diego, San Diego, CA

Paper No. IJTC2011-61091, pp. 277-279; 3 pages
  • ASME/STLE 2011 International Joint Tribology Conference
  • ASME/STLE 2011 Joint Tribology Conference
  • Los Angeles, California, USA, Oct 24–26, 2011
  • ISBN: 978-0-7918-5474-7
  • Copyright © 2011 by ASME


Yield inception of a coated substrate indented by a rigid sphere is analyzed using finite element analysis. The critical interference is studied as a function of film thickness and material properties of both the film and the substrate. The results show that critical interference, corresponding to yield inception of the coated substrate, is a strong function of the film thickness, the Young’s modulus, and the yield strength of both the film and the substrate.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In