Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Rock Mechanical Properties on the Formation of Rock Fragments During Cutting Operation

[+] Author Affiliations
Pradeep L. Menezes, Michael R. Lovell

University of Wisconsin-Milwaukee, Milwaukee, WI

Paper No. IJTC2011-61220, pp. 253-255; 3 pages
  • ASME/STLE 2011 International Joint Tribology Conference
  • ASME/STLE 2011 Joint Tribology Conference
  • Los Angeles, California, USA, Oct 24–26, 2011
  • ISBN: 978-0-7918-5474-7
  • Copyright © 2011 by ASME


Mechanical rock cutting is a process encountered in different engineering applications including rock excavation, mining and deep oil well drilling. Rock mechanical properties vary with depth in the subsurface and also at different geographical locations due to different environmental conditions. Understanding of fragmentation mechanisms in specific rock materials allows the determination of optimum cutting parameters that improve cutting efficiency and increase tool life during cutting operations. In the present investigation, numerical models that accurately predict the rock fragmentation and stress profiles in the rock slab during cutting were developed using the explicit finite-element method (FEM). In the numerical models, a damage material model was utilized to capture the rock fragmentation process and a rigid steel cutter (at different rake angles) was displaced at different velocities against a stationary rock slab. Rock slabs with significantly different mechanical properties were incorporated with a constant friction factor and a cutting depth of 1 mm. The variation of cutting forces and stresses, and fragmentation of the rock slab were analyzed. The simulation results indicated that the explicit FEM is a powerful tool for simulating rock cutting as the formation of fragments were distinctly observed at different cutting conditions. The rock mechanical properties and tool rake angle were found to have the most significant effect on the rock fragmentation during cutting operations. The cutting forces were also influenced by mechanical properties of the rock and tool rake angle.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In