Full Content is available to subscribers

Subscribe/Learn More  >

Development of a Human Head-Neck Computational Model for Assessing Blast Injury

[+] Author Affiliations
J. C. Roberts

The Johns Hopkins University, Laurel, MD, Baltimore, MD

E. E. Ward, T. P. Harrigan, T. M. Taylor, A. C. Merkle

The Johns Hopkins University, Laurel, MD

M. A. Annett

NASA Langley Research Center, Hampton, VA

Paper No. IMECE2009-11813, pp. 95-96; 2 pages
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 2: Biomedical and Biotechnology Engineering
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4375-8 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME


A finite element model (FEM) of the human head attached to a Hybrid III FEM neck was developed to study the effects of blast loading on the brain. Simulations of blast loading to this Human Head Finite Element Model (HHFEM) were generated by creating a computational fluid dynamics (CFD) model of the HHFEM headform in a shock tube. Three different driver pressure loading conditions from experimental testing of the Human Surrogate Head Model (HSHM) were simulated by this model. The pressure time histories at each grid point of the CFD headform were used as inputs to the HHFEM. Brain/cerebral spinal fluid (CSF) and CSF/skull boundary conditions along with different brain material models were considered. The Kelvin-Maxwell material model and a low friction surface-to-surface interface were found to best replicate conditions seen in experimental testing of the HSHM. Deformations in the anterior and posterior locations of the brain varied from 0.5–0.9 mm and intracranial pressures at those locations were between 32 and 55 kPa.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In